Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## Elastic properties of NdFe₄P₁₂ Y. Nakanishi¹, T. D. Matsuda², H. Sugawara², H. Sato², M. Yoshizawa¹ - Department of Materials Science and Engineering, Iwate University, Morioka 020-8551, Japan - ² Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan ReFe₄P₁₂, crystallized in the filled skutterudite structure, exhibits various interesting physical properties at low temperature depending on Re; i.e., superconducting LaFe₄P₁₂ below 4.1 K, semiconducting CeFe₄P₁₂ and ferromagnetic NdFe₄P₁₂ below 1.9 K.¹⁾ Furthermore, recent studies revealed the existence of heavy mass electrons in PrFe₄P₁₂.²⁾ We have investigated the elastic properties of NdFe₄P₁₂ by means of the ultrasonic measurement for the first time to elucidate the crystalline electric field (CEF) ground state of Nd³⁺. The elastic constants C_{11} , $(C_{11}$ - $C_{12})/2$ and C_{44} increase monotonically with decreasing temperature. However, a pronounced softening has been observed in all elastic constants around T_c = 1.9 K, which may be due to the CEF ground state degenerated by the quadrupolar moment. Furthermore, we have found the upturn in $(C_{11}$ - $C_{12})/2$ around 20 K. Our results indicate that the $\Gamma_8^{(1)}$ quartet state is plausible as the CEF ground state. - 1) M. S. Torikachvili et al.: Phys. Rev. B36 (1987) 8660. - 2) H. Sugawara: private communication.